This is a sequel to my last post (Seeing is Believing?), addressing the same issue from a different point of view. Fractions, of course, are difficult. When teaching 4th and 5th grade in the 1970's I struggled with this, and came up with a powerful learning tool: fraction rectangles. The idea is that it is… Continue reading Fraction Rectangles

# Tag: Teaching

## Seeing is Believing?

“Proofs Without Words” are proofs based on a visual representation of a theorem which provides a convincing argument about its validity without the need for any accompanying text. The genre has been much enriched by the increased availability of computer animation. This is of course relevant to math education: many of the concepts we teach can be illustrated visually, including with… Continue reading Seeing is Believing?

## Tiling and Transformations

In my last post, I argued that tiling is a good topic to include in a geometry program. Students find it engaging: on the one hand, it connects with art and culture; on the other hand, it provides a context for student creativity. At the same time, it presents many connections with the geometry curriculum in middle school and high… Continue reading Tiling and Transformations

## Tiling

Covering the plane with an unlimited supply of identical tiles is called tiling the plane, or tessellation. Over the years, I’ve developed a number of classroom activities about tiling. You can find links to those on the Tiling home page on my website. In a conversation with a teacher a few months ago, I realized… Continue reading Tiling

## Virtual Manipulatives: Part 2

In the previous post, I discussed virtual manipulatives in general, and a particular implementation for algebra, using a Google Drawings representation of the Lab Gear. In this post, I will explore GeoGebra as a platform for virtual manipulatives. Pattern Blocks Virtual pattern blocks are not hard to find on the Web. One good implementation is on the Math… Continue reading Virtual Manipulatives: Part 2

## Virtual Manipulatives: Part 1

Learning Tools In 1981, after ten years in K-5, I switched to teaching high school math. In some ways, this felt like starting a whole new career: the math was more involved, the relationship with students less like parenting, and tradition weighed a lot more heavily on the profession. Still, in other ways, teaching is… Continue reading Virtual Manipulatives: Part 1

## No One Way

My motto for this blog, and for my website, is “There is no one way”. It is a topic I have returned to many times, for example, in these posts: Catchphrases, where I mostly discuss the assorted slogans I have spouted over the years. How To, where I argue that there is no single “best way” to teach any… Continue reading No One Way

## Towards Inquiry

When I was much younger, I was under the impression that anything students “discover”, they will remember. Over time, I realized that this is not really true. First of all, what I hope they discovered may not be what they actually understand. But also, it’s not clear to them what is important about their discovery,… Continue reading Towards Inquiry

## Teaching the Distributive Property

A guest post by Rachel Chou I have been a classroom mathematics teacher for 20 years. I have heard students use the phrase “the distributive property” more times than I can count. Many of them misunderstand what “the distributive property” even is. But maybe I think that because I don’t really know what “the distributive property”… Continue reading Teaching the Distributive Property

## Freakonomics Radio on Math Curriculum

Every now and then, an academic decides they’re qualified to fundamentally rethink math education, and to share their brilliant solution with the world. That is already problematic when the academic is a mathematician or a math education researcher, but it is even worse when it is someone whose only connection to K-12 math education is that… Continue reading Freakonomics Radio on Math Curriculum